Home > Computing and Information Technology > Computer science > Artificial intelligence > Computer vision > Scale Space and Variational Methods in Computer Vision: 9th International Conference, SSVM 2023, Santa Margherita di Pula, Italy, May 21–25, 2023, Proceedings(14009 Lecture Notes in Computer Science)
37%
Scale Space and Variational Methods in Computer Vision: 9th International Conference, SSVM 2023, Santa Margherita di Pula, Italy, May 21–25, 2023, Proceedings(14009 Lecture Notes in Computer Science)

Scale Space and Variational Methods in Computer Vision: 9th International Conference, SSVM 2023, Santa Margherita di Pula, Italy, May 21–25, 2023, Proceedings(14009 Lecture Notes in Computer Science)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

This book constitutes the proceedings of the 9th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2023, which took place in Santa Margherita di Pula, Italy, in May 2023.  The 57 papers presented in this volume were carefully reviewed and selected from 72 submissions. They were organized in topical sections as follows: Inverse Problems in Imaging; Machine and Deep Learning in Imaging; Optimization for Imaging: Theory and Methods; Scale Space, PDEs, Flow, Motion and Registration.

Table of Contents:
​Inverse Problems in Imaging.- Explicit Diffusion of Gaussian Mixture Model Based Image Priors.- Efficient Neural Generation of 4K Masks for Homogeneous Diffusion Inpainting.- Theoretical Foundations for Pseudo-Inversion of Nonlinear Operators.- A Frame Decomposition of the Funk-Radon Transform.- Prony-Based Super-Resolution Phase Retrieval of Sparse, Multidimensional Signals.- Limited Electrodes Models in Electrical Impedance Tomography Reconstruction.- On Trainable Multiplicative Noise Removal Models.- Surface Reconstruction from 2D Noisy Point Cloud Data using Directional G-norm.- Regularized Material Decomposition for K-Edge Separation in Hyperspectral Computed Tomography.- Quaternary Image Decomposition with Cross-Correlation-Based Multi-Parameter Selection.- Machine and Deep Learning in Imaging.- EmNeF: Neural Fields for Embedded Variational Problems in Imaging.- GenHarris-ResNet: A Rotation Invariant Neural Network Based on Elementary Symmetric Polynomials.- Compressive Learning of Deep Regularization for Denoising.- Graph Laplacian and Neural Networks for Inverse Problems in Imaging: graphLaNet.- Learning Posterior Distributions in Underdetermined Inverse Problems.- Proximal Residual Flows for Bayesian Inverse Problems.- A Model Is Worth Tens of Thousands of Examples.- Resolution-Invariant Image Classification Based on Fourier Neural Operators.- Graph Laplacian for Semi-Supervised Learning.- A Geometrically Aware Auto-Encoder for Multi-Texture Synthesis.- Fast Marching Energy CNN.- Deep Accurate Solver for the Geodesic Problem.- Deep Image Prior Regularized by Coupled Total Variation for Image Colorization.- Hybrid Training of Denoising Networks to Improve the Texture Acutance of Digital Cameras.- Latent-Space Disentanglement with Untrained Generator Networks for the Isolation of Different Motion Types in Video Data.- Natural Numerical Networks on Directed Graphs in Satellite Image Classification.- Piece-Wise Constant Image Segmentation with a Deep Image PriorApproach.- On the Inclusion of Topological Requirements in CNNs for Semantic Segmentation Applied to Radiotherapy.- Optimization for Imaging: Theory and Methods.- A Relaxed Proximal Gradient Descent Algorithm for Convergent Plug-and-Play with Proximal Denoiser.- Off-the-Grid Charge Algorithm for Curve Reconstruction in Inverse Problems.- Convergence Guarantees of Overparametrized Wide Deep Inverse Prior.- On the Remarkable Efficiency of SMART.- Wasserstein Gradient Flows of the Discrepancy with Distance Kernel on the Line.- A Quasi-Newton Primal-Dual Algorithm with Line Search.- Stochastic Gradient Descent for Linear Inverse Problems in Variable Exponent Lebesgue Spaces.- An Efficient Line Search for Sparse Reconstruction.- Learned Discretization Schemes for the Second-Order Total Generalized Variation.- Fluctuation-Based Deconvolution in Fluorescence Microscopy Using Plug-and-Play Denoisers.- Segmenting MR Images Through Texture Extraction and Multiplicative Components Optimization.- Scale Space, PDEs, Flow, Motion and Registration.- Geodesic Tracking of Retinal Vascular Trees with Optical and TV-Flow Enhancement in SE(2).- Geometric Adaptations of PDE-G-CNNs.- The Variational Approach to the Flow of Sobolev-Diffeomorphisms Model.- Image Comparison and Scaling via Nonlinear Elasticity.- Learning Differential Invariants of Planar Curves.- Diffusion-Shock Inpainting.- Generalised Scale-Space Properties for Probabilistic Diffusion Models.- Gromov-Wasserstein Transfer Operators.- Optimal Transport Between GMM for Multiscale Texture Synthesis.- Asymptotic Result for a Decoupled Nonlinear Elasticity-Based Multiscale Registration Model.- Image Blending with Osmosis.- α-Pixels for Hierarchical Analysis of Digital Objects.- Hypergraph p-Laplacians, Scale Spaces, and Information Flow in Networks.- On Photometric Stereo in the Presence of a Refractive Interface.- Multi-View Normal Estimation – Application to Slanted Plane-Sweeping.- Partial Shape Similarity by Multi-Metric Hamiltonian Spectra Matching.- Modeling Large-Scale Joint Distributions and Inference by RandomizedAssignment.- Quantum State Assignment Flows.


Best Sellers


Product Details
  • ISBN-13: 9783031319747
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 759
  • Returnable: Y
  • Spine Width: 39 mm
  • Weight: 1065 gr
  • ISBN-10: 3031319745
  • Publisher Date: 02 May 2023
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: 14009 Lecture Notes in Computer Science
  • Sub Title: 9th International Conference, SSVM 2023, Santa Margherita di Pula, Italy, May 21–25, 2023, Proceedings
  • Width: 155 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Scale Space and Variational Methods in Computer Vision: 9th International Conference, SSVM 2023, Santa Margherita di Pula, Italy, May 21–25, 2023, Proceedings(14009 Lecture Notes in Computer Science)
Springer International Publishing AG -
Scale Space and Variational Methods in Computer Vision: 9th International Conference, SSVM 2023, Santa Margherita di Pula, Italy, May 21–25, 2023, Proceedings(14009 Lecture Notes in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Scale Space and Variational Methods in Computer Vision: 9th International Conference, SSVM 2023, Santa Margherita di Pula, Italy, May 21–25, 2023, Proceedings(14009 Lecture Notes in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA