Home > Mathematics and Science Textbooks > Mathematics > Combinatorics and graph theory > Probabilistic Combinatorial Optimization on Graphs
Probabilistic Combinatorial Optimization on Graphs

Probabilistic Combinatorial Optimization on Graphs

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

This title provides a comprehensive survey over the subject of probabilistic combinatorial optimization, discussing probabilistic versions of some of the most paradigmatic combinatorial problems on graphs, such as the maximum independent set, the minimum vertex covering, the longest path and the minimum coloring. Those who possess a sound knowledge of the subject mater will find the title of great interest, but those who have only some mathematical familiarity and knowledge about complexity and approximation theory will also find it an accessible and informative read.

Table of Contents:
Preface 11 Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization 15 1.1. Motivations and applications 15 1.2. A formalism for probabilistic combinatorial optimization 19 1.3. The main methodological issues dealing with probabilistic combinatorial optimization 24 1.3.1. Complexity issues 24 1.3.1.1. Membership in NPO is not always obvious 24 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems 24 1.3.2. Solution issues 26 1.3.2.1. Characterization of optimal a priori solutions 26 1.3.2.2. Polynomial subcases 28 1.3.2.3. Exact solutions and polynomial approximation issues 29 1.4. Miscellaneous and bibliographic notes 31 FIRST PART. PROBABILISTIC GRAPH-PROBLEMS 35 Chapter 2. The Probabilistic Maximum Independent Set 37 2.1. The modification strategies and a preliminary result 39 2.1.1. Strategy M1 39 2.1.2. Strategies M2 and M3 39 2.1.3. Strategy M4 41 2.1.4. Strategy M5 41 2.1.5. A general mathematical formulation for the five functionals 42 2.2. PROBABILISTIC MAX INDEPENDENT SET1 44 2.2.1. Computing optimal a priori solutions 44 2.2.2. Approximating optimal solutions 45 2.2.3. Dealing with bipartite graphs 46 2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3 47 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3) 47 2.3.2. An upper bound for the complexity of E(G, S, M2) 48 2.3.3. Bounds for E(G, S, M2) 49 2.3.4. Approximating optimal solutions 51 2.3.4.1. Using argmax{_vi∈S pi} as an a priori solution 51 2.3.4.2. Using approximations of MAX INDEPENDENT SET 53 2.3.5. Dealing with bipartite graphs 53 2.4. PROBABILISTIC MAX INDEPENDENT SET4 55 2.4.1. An expression for E(G, S, M4) 55 2.4.2. Using S∗ or argmax{_vi∈S pi} as an a priori solution 56 2.4.3. Dealing with bipartite graphs 57 2.5. PROBABILISTIC MAX INDEPENDENT SET5 58 2.5.1. In general graphs 58 2.5.2. In bipartite graphs 60 2.6. Summary of the results 61 2.7. Methodological questions 63 2.7.1. Maximizing a criterion associated with gain 65 2.7.1.1. The minimum gain criterion 65 2.7.1.2. The maximum gain criterion 66 2.7.2. Minimizing a criterion associated with regret 68 2.7.2.1. The maximum regret criterion 68 2.7.3. Optimizing expectation 70 2.8. Proofs of the results 71 2.8.1. Proof of Proposition 2.1 71 2.8.2. Proof of Theorem 2.6 74 2.8.3. Proof of Proposition 2.3 77 2.8.4. Proof of Theorem 2.13 78 Chapter 3. The Probabilistic Minimum Vertex Cover 81 3.1. The strategies M1, M2 and M3 and a general preliminary result 82 3.1.1. Specification of M1, M2 and M3 82 3.1.1.1. Strategy M1 82 3.1.1.2. Strategy M2 83 3.1.1.3. Strategy M3 83 3.1.2. A first expression for the functionals 84 3.2. PROBABILISTIC MIN VERTEX COVER1 84 3.3. PROBABILISTIC MIN VERTEX COVER2 86 3.4. PROBABILISTIC MIN VERTEX COVER3 87 3.4.1. Building E(G, C, M3) 87 3.4.2. Bounds for E(G, C, M3) 88 3.5. Some methodological questions 89 3.6. Proofs of the results 91 3.6.1. Proof of Theorem 3.3 91 3.6.2. On the the bounds obtained in Theorem 3.3 93 Chapter 4. The Probabilistic Longest Path 99 4.1. Probabilistic longest path in terms of vertices 100 4.2. Probabilistic longest path in terms of arcs 102 4.2.1. An interesting algebraic expression 104 4.2.2. Metric PROBABILISTIC ARC WEIGHTED LONGEST PATH 105 4.3. Why the strategies used are pertinent 109 4.4. Proofs of the results 110 4.4.1. Proof of Theorem 4.1 110 4.4.2. Proof of Theorem 4.2 112 4.4.3. An algebraic proof for Theorem 4.3 114 4.4.4. Proof of Lemma 4.1 116 4.4.5. Proof of Lemma 4.2 117 4.4.6. Proof of Theorem 4.4 117 Chapter 5. Probabilistic Minimum Coloring 125 5.1. The functional E(G,C) 127 5.2. Basic properties of probabilistic coloring 131 5.2.1. Properties under non-identical vertex-probabilities 131 5.2.2. Properties under identical vertex-probabilities 131 5.3. PROBABILISTIC MIN COLORING in general graphs 132 5.3.1. The complexity of probabilistic coloring 132 5.3.2. Approximation 132 5.3.2.1. The main result 132 5.3.2.2. Further approximation results 137 5.4. PROBABILISTIC MIN COLORING in bipartite graphs 139 5.4.1. A basic property 139 5.4.2. General bipartite graphs 141 5.4.3. Bipartite complements of bipartite matchings 147 5.4.4. Trees 151 5.4.5. Cycles 154 5.5. Complements of bipartite graphs 155 5.6. Split graphs 156 5.6.1. The complexity of PROBABILISTIC MIN COLORING 156 5.6.2. Approximation results 159 5.7. Determining the best k-coloring in k-colorable graphs 164 5.7.1. Bipartite graphs 164 5.7.1.1. PROBABILISTIC MIN 3-COLORING 164 5.7.1.2. PROBABILISTIC MIN k-COLORING fork > 3 168 5.7.1.3. Bipartite complements of bipartite matchings 171 5.7.2. The complements of bipartite graphs 171 5.7.3. Approximation in particular classes of graphs 174 5.8. Comments and open problems 175 5.9. Proofs of the different results 178 5.9.1. Proof of [5.5] 178 5.9.2. Proof of [5.4] 179 5.9.3. Proof of Property 5.1 180 5.9.4. Proof of Proposition 5.2 181 5.9.5. Proof of Lemma 5.11 183 SECOND PART. STRUCTURAL RESULTS 185 Chapter 6. Classification of Probabilistic Graph-problems 187 6.1. When MS is feasible 187 6.1.1. The a priori solution is a subset of the initial vertex-set 188 6.1.2. The a priori solution is a collection of subsets of the initial vertex-set 191 6.1.3. The a priori solution is a subset of the initial edge-set 193 6.2. When application of MS itself does not lead to feasible solutions 198 6.2.1. The functional associated with MSC 198 6.2.2. Applications 199 6.2.2.1. The a priori solution is a cycle 200 6.2.2.2. The a priori solution is a tree 201 6.3. Some comments 205 6.4. Proof of Theorem 6.4 206 Chapter 7. A Compendium of Probabilistic NPO Problems on Graphs 211 7.1. Covering and partitioning 214 7.1.1. MIN VERTEX COVER 214 7.1.2. MIN COLORING 214 7.1.3. MAX ACHROMATIC NUMBER 215 7.1.4. MIN DOMINATING SET 215 7.1.5. MAX DOMATIC PARTITION 216 7.1.6. MIN EDGE-DOMINATING SET 216 7.1.7. MIN INDEPENDENT DOMINATING SET 217 7.1.8. MIN CHROMATIC SUM 217 7.1.9. MIN EDGE COLORING 218 7.1.10. MIN FEEDBACK VERTEX-SET 219 7.1.11. MIN FEEDBACK ARC-SET 220 7.1.12. MAX MATCHING 220 7.1.13. MIN MAXIMAL MATCHING 220 7.1.14. MAX TRIANGLE PACKING 220 7.1.15. MAX H-MATCHING 221 7.1.16. MIN PARTITION INTO CLIQUES 222 7.1.17. MIN CLIQUE COVER 222 7.1.18. MIN k-CAPACITED TREE PARTITION 222 7.1.19. MAX BALANCED CONNECTED PARTITION 223 7.1.20. MIN COMPLETE BIPARTITE SUBGRAPH COVER 223 7.1.21. MIN VERTEX-DISJOINT CYCLE COVER 223 7.1.22. MIN CUT COVER 224 7.2. Subgraphs and supergraphs 224 7.2.1. MAX INDEPENDENT SET 224 7.2.2. MAX CLIQUE 224 7.2.3. MAX INDEPENDENT SEQUENCE 225 7.2.4. MAX INDUCED SUBGRAPH WITH PROPERTY π 225 7.2.5. MIN VERTEX DELETION TO OBTAIN SUBGRAPH WITH PROPERTY π 225 7.2.6. MIN EDGE DELETION TO OBTAIN SUBGRAPH WITH PROPERTY π 226 7.2.7. MAX CONNECTED SUBGRAPH WITH PROPERTY π 226 7.2.8. MIN VERTEX DELETION TO OBTAIN CONNECTED SUBGRAPH WITH PROPERTY π 226 7.2.9. MAX DEGREE-BOUNDED CONNECTED SUBGRAPH 226 7.2.10. MAX PLANAR SUBGRAPH 227 7.2.11. MIN EDGE DELETION k-PARTITION 227 7.2.12. MAX k-COLORABLE SUBGRAPH 227 7.2.13. MAX SUBFOREST 228 7.2.14. MAX EDGE SUBGRAPH or DENSE k-SUBGRAPH 228 7.2.15. MIN EDGE K-SPANNER 228 7.2.16. MAX k-COLORABLE INDUCED SUBGRAPH 229 7.2.17. MIN EQUIVALENT DIGRAPH 229 7.2.18. MIN CHORDAL GRAPH COMPLETION 229 7.3. Iso- and other morphisms 229 7.3.1. MAX COMMON SUBGRAPH 229 7.3.2. MAX COMMON INDUCED SUBGRAPH 230 7.3.3. MAX COMMON EMBEDDED SUBTREE 230 7.3.4. MIN GRAPH TRANSFORMATION 230 7.4. Cuts and connectivity 231 7.4.1. MAX CUT 231 7.4.2. MAX DIRECTED CUT 231 7.4.3. MIN CROSSING NUMBER 231 7.4.4. MAX k-CUT 232 7.4.5. MIN k-CUT 233 7.4.6. MIN NETWORK INHIBITION ON PLANAR GRAPHS 233 7.4.7. MIN VERTEX k-CUT 234 7.4.8. MIN MULTI-WAY CUT 234 7.4.9. MIN MULTI-CUT 234 7.4.10. MIN RATIO-CUT 235 7.4.11. MIN b-BALANCED CUT 236 7.4.12. MIN b-VERTEX SEPARATOR 236 7.4.13. MIN QUOTIENT CUT 236 7.4.14. MIN k-VERTEX CONNECTED SUBGRAPH 236 7.4.15. MIN k-EDGE CONNECTED SUBGRAPH 237 7.4.16. MIN BICONNECTIVITY AUGMENTATION 237 7.4.17. MIN STRONG CONNECTIVITY AUGMENTATION 237 7.4.18. MIN BOUNDED DIAMETER AUGMENTATION 237 Appendix A. Mathematical Preliminaries 239 A.1. Sets, relations and functions 239 A.2. Basic concepts from graph-theory 242 A.3. Elements from discrete probabilities 246 Appendix B. Elements of the Complexity and the Approximation Theory 249 B.1. Problem, algorithm, complexity 249 B.2. Some notorious complexity classes 250 B.3. Reductions and NP-completeness 251 B.4. Approximation of NP-hard problems 252 Bibliography 255 Index 261


Best Sellers


Product Details
  • ISBN-13: 9781905209330
  • Publisher: ISTE Ltd and John Wiley & Sons Inc
  • Publisher Imprint: ISTE Ltd and John Wiley & Sons Inc
  • Height: 243 mm
  • No of Pages: 267
  • Returnable: N
  • Series Title: English
  • Weight: 535 gr
  • ISBN-10: 1905209339
  • Publisher Date: 08 Mar 2006
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Spine Width: 20 mm
  • Width: 161 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Probabilistic Combinatorial Optimization on Graphs
ISTE Ltd and John Wiley & Sons Inc -
Probabilistic Combinatorial Optimization on Graphs
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Probabilistic Combinatorial Optimization on Graphs

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA