Home > Computing and Information Technology > Computer science > Systems analysis and design > Machine Learning with Python for Everyone Part 1: Learning Foundations
Machine Learning with Python for Everyone Part 1: Learning Foundations

Machine Learning with Python for Everyone Part 1: Learning Foundations

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

5+ Hours of Video Instruction Code-along sessions move you from introductory machine learning concepts to concrete code. Machine learning is moving from futuristic AI projects to data analysis on your desk. You need to go beyond nodding along in discussion to coding machine learning tasks. In Machine Learning with Python for Everyone Part 1: Learning Foundations, Second Edition, the videos skew away from heavy mathematics and focus on showing you how to turn introductory machine learning concepts into concrete code using Python, scikit-learn, and friends. Our focus is on stories, graphics, and code that build your understanding of machine learning; we minimize pure mathematics. You learn how to load and explore simple datasets; build, train, and perform basic learning evaluation for a few models; compare the resource usage of different models in code snippets and scripts; and briefly explore some of the software and mathematics behind these techniques. Skill Level Beginner Learn How To Build and apply simple classification and regression models Evaluate learning performance with train-test splits Evaluate learning performance with metrics tailored to classification and regression Evaluate the resource usage of your learning models Who Should Take This Course If you are becoming familiar with the basic concepts of machine learning and you want an experienced hand to help you turn those concepts into running code, this course is for you. If you have some coding knowledge but want to see how Python can drive basic machine learning models and practice, this course is for you. Course Requirements A basic understanding of programming in Python (variables, basic control flow, simple scripts) Lesson Descriptions Lesson 1: Software Background In Lesson 1, Mark discusses the environment used to run the code and several of the fundamental software packages used throughout the lessons. Mark discusses scikit-learn, seaborn, and pandas--high-level packages that have many powerful features. Mark also introduces numpy and matplotlib--more foundational packages. Lesson 2: Mathematical Background In Lesson 2, Mark continues the discussion of background and foundations. He covers several important mathematical ideas: probability, linear combinations, and geometry. He approaches these concepts from a practical and computational viewpoint. He introduces them but shies away from theory. He also spends a few minutes talking about technical issues that affect how you approach mathematics on the computer. Lesson 3: Beginning Classification (Part I) In Lesson 3, Mark gets your attention squarely focused on building, training, and evaluating simple classification models. He starts by introducing you to a practice dataset. Along the way, he covers train-test splits, accuracy, and two models: k-nearest neighbors and naive Bayes. Lesson 4: Beginning Classification (Part II) In Lesson 4, Mark continues the discussion of classification and focuses on two ways to evaluate classifiers. He shows you how to evaluate learning performance with accuracy and how to evaluate resource utilization for memory and time. Mark shows you how to do this both within Jupyter notebooks and also in standalone Python scripts. Lesson 5: Beginning Regression (Part I) In Lesson 5, Mark discusses and demonstrates building, training, and basic evaluation of simple regression models. He starts with a practice dataset. Along the way, he discusses different ways of measuring the center of numerical data, and then he discusses two models: k-nearest neighbors and linear regression. Lesson 6: Beginning Regression (Part II) Lesson 6 continues regression. Mark explains how we can pick good models from a basket of possible models. Then, he covers how to evaluate learning and resource consumption of regressors in notebook and standalone scenarios. About Pearson Video Training Pearson publishes expert-led video tutorials covering a wide selection of technology topics designed to teach you the skills you need to succeed. These professional and personal technology videos feature world-leading author instructors published by your trusted technology brands: Addison-Wesley, Cisco Press, Pearson IT Certification, Sams, and Que. Topics include IT Certification, Network Security, Cisco Technology, Programming, Web Development, Mobile Development, and more. Learn more about Pearson Video training at informit.com/video.


Best Sellers


Product Details
  • ISBN-13: 9780137932962
  • Publisher: Pearson Education (US)
  • Publisher Imprint: Pearson Education (US)
  • Language: English
  • ISBN-10: 0137932960
  • Publisher Date: 31 Aug 2022
  • Binding: Digital
  • Sub Title: Learning Foundations


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Machine Learning with Python for Everyone Part 1: Learning Foundations
Pearson Education (US) -
Machine Learning with Python for Everyone Part 1: Learning Foundations
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning with Python for Everyone Part 1: Learning Foundations

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA