Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine Learning and Data Mining in Pattern Recognition: 5th International Conference, MLDM 2007, Leipzig, Germany, July 18-20, 2007, Proceedings(4571 Lecture Notes in Computer Science)
Machine Learning and Data Mining in Pattern Recognition: 5th International Conference, MLDM 2007, Leipzig, Germany, July 18-20, 2007, Proceedings(4571 Lecture Notes in Computer Science)

Machine Learning and Data Mining in Pattern Recognition: 5th International Conference, MLDM 2007, Leipzig, Germany, July 18-20, 2007, Proceedings(4571 Lecture Notes in Computer Science)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

MLDM / ICDM Medaillie Meissner Porcellan, the “White Gold” of King August the Strongest of Saxonia Gottfried Wilhelm von Leibniz, the great mathematician and son of Leipzig, was watching over us during our event in Machine Learning and Data Mining in Pattern Recognition (MLDM 2007). He can be proud of what we have achieved in this area so far. We had a great research program this year. This was the fifth MLDM in Pattern Recognition event held in Leipzig (www.mldm.de). Today, there are many international meetings carrying the title machine learning and data mining, whose topics are text mining, knowledge discovery, and applications. This meeting from the very first event has focused on aspects of machine learning and data mining in pattern recognition problems. We planned to reorganize classical and well-established pattern recognition paradigms from the view points of machine learning and data mining. Although it was a challenging program in the late 1990s, the idea has provided new starting points in pattern recognition and has influenced other areas such as cognitive computer vision. For this edition, the Program Committee received 258 submissions from 37 countries (see Fig. 1). To handle this high number of papers was a big challenge for the reviewers. Every paper was thoroughly reviewed and all authors received a detailed report on their submitted work.

Table of Contents:
Invited Talk.- Data Clustering: User’s Dilemma.- Classification.- On Concentration of Discrete Distributions with Applications to Supervised Learning of Classifiers.- Comparison of a Novel Combined ECOC Strategy with Different Multiclass Algorithms Together with Parameter Optimization Methods.- Multi-source Data Modelling: Integrating Related Data to Improve Model Performance.- An Empirical Comparison of Ideal and Empirical ROC-Based Reject Rules.- Outlier Detection with Kernel Density Functions.- Generic Probability Density Function Reconstruction for Randomization in Privacy-Preserving Data Mining.- An Incremental Fuzzy Decision Tree Classification Method for Mining Data Streams.- On the Combination of Locally Optimal Pairwise Classifiers.- Feature Selection, Extraction and Dimensionality Reduction.- An Agent-Based Approach to the Multiple-Objective Selection of Reference Vectors.- On Applying Dimension Reduction for Multi-labeled Problems.- Nonlinear Feature Selection by Relevance Feature Vector Machine.- Affine Feature Extraction: A Generalization of the Fukunaga-Koontz Transformation.- Clustering.- A Bounded Index for Cluster Validity.- Varying Density Spatial Clustering Based on a Hierarchical Tree.- Kernel MDL to Determine the Number of Clusters.- Critical Scale for Unsupervised Cluster Discovery.- Minimum Information Loss Cluster Analysis for Categorical Data.- A Clustering Algorithm Based on Generalized Stars.- Support Vector Machine.- Evolving Committees of Support Vector Machines.- Choosing the Kernel Parameters for the Directed Acyclic Graph Support Vector Machines.- Data Selection Using SASH Trees for Support Vector Machines.- Dynamic Distance-Based Active Learning with SVM.- Transductive Inference.- Off-Line Learning with Transductive ConfidenceMachines: An Empirical Evaluation.- Transductive Learning from Relational Data.- Association Rule Mining.- A Novel Rule Ordering Approach in Classification Association Rule Mining.- Distributed and Shared Memory Algorithm for Parallel Mining of Association Rules.- Mining Spam, Newsgroups, Blogs.- Analyzing the Performance of Spam Filtering Methods When Dimensionality of Input Vector Changes.- Blog Mining for the Fortune 500.- A Link-Based Rank of Postings in Newsgroup.- Intrusion Detection and Networks.- A Comparative Study of Unsupervised Machine Learning and Data Mining Techniques for Intrusion Detection.- Long Tail Attributes of Knowledge Worker Intranet Interactions.- A Case-Based Approach to Anomaly Intrusion Detection.- Sensing Attacks in Computers Networks with Hidden Markov Models.- Frequent and Common Item Set Mining.- FIDS: Monitoring Frequent Items over Distributed Data Streams.- Mining Maximal Frequent Itemsets in Data Streams Based on FP-Tree.- CCIC: Consistent Common Itemsets Classifier.- Mining Marketing Data.- Development of an Agreement Metric Based Upon the RAND Index for the Evaluation of Dimensionality Reduction Techniques, with Applications to Mapping Customer Data.- A Sequential Hybrid Forecasting System for Demand Prediction.- A Unified View of Objective Interestingness Measures.- Comparing State-of-the-Art Collaborative Filtering Systems.- Structural Data Mining.- Reducing the Dimensionality of Vector Space Embeddings of Graphs.- PE-PUC: A Graph Based PU-Learning Approach for Text Classification.- Efficient Subsequence Matching Using the Longest Common Subsequence with a Dual Match Index.- A Direct Measure for the Efficacy of Bayesian Network Structures Learned from Data.- Image Mining.- A New Combined Fractal Scale Descriptor for Gait Sequence.- Palmprint Recognition by Applying Wavelet Subband Representation and Kernel PCA.- A Filter-Refinement Scheme for 3D Model Retrieval Based on Sorted Extended Gaussian Image Histogram.- Fast-Maneuvering Target Seeking Based on Double-Action Q-Learning.- Mining Frequent Trajectories of Moving Objects for Location Prediction.- Categorizing Evolved CoreWar Warriors Using EM and Attribute Evaluation.- Restricted Sequential Floating Search Applied to Object Selection.- Color Reduction Using the Combination of the Kohonen Self-Organized Feature Map and the Gustafson-Kessel Fuzzy Algorithm.- A Hybrid Algorithm Based on Evolution Strategies and Instance-Based Learning, Used in Two-Dimensional Fitting of Brightness Profiles in Galaxy Images.- Gait Recognition by Applying Multiple Projections and Kernel PCA.- Medical, Biological, and Environmental Data Mining.- A Machine Learning Approach to Test Data Generation: A Case Study in Evaluation of Gene Finders.- Discovering Plausible Explanations of Carcinogenecity in Chemical Compounds.- One Lead ECG Based Personal Identification with Feature Subspace Ensembles.- Classification of Breast Masses in Mammogram Images Using Ripley’s K Function and Support Vector Machine.- Selection of Experts for the Design of Multiple Biometric Systems.- Multi-agent System Approach to React to Sudden Environmental Changes.- Equivalence Learning in Protein Classification.- Text and Document Mining.- Statistical Identification of Key Phrases for Text Classification.- Probabilistic Model for Structured Document Mapping.- Application of Fractal Theory for On-Line and Off-Line Farsi Digit Recognition.- Hybrid Learning of Ontology Classes.- Discovering Relations Among Entities from XML Documents.


Best Sellers


Product Details
  • ISBN-13: 9783540734987
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Edition: 2007 ed.
  • Language: English
  • Returnable: Y
  • Series Title: 4571 Lecture Notes in Computer Science
  • Spine Width: 47 mm
  • Weight: 1277 gr
  • ISBN-10: 3540734988
  • Publisher Date: 16 Jul 2007
  • Binding: Paperback
  • Height: 235 mm
  • No of Pages: 916
  • Returnable: Y
  • Series Title: 4571 Lecture Notes in Computer Science
  • Sub Title: 5th International Conference, MLDM 2007, Leipzig, Germany, July 18-20, 2007, Proceedings
  • Width: 155 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Machine Learning and Data Mining in Pattern Recognition: 5th International Conference, MLDM 2007, Leipzig, Germany, July 18-20, 2007, Proceedings(4571 Lecture Notes in Computer Science)
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Machine Learning and Data Mining in Pattern Recognition: 5th International Conference, MLDM 2007, Leipzig, Germany, July 18-20, 2007, Proceedings(4571 Lecture Notes in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning and Data Mining in Pattern Recognition: 5th International Conference, MLDM 2007, Leipzig, Germany, July 18-20, 2007, Proceedings(4571 Lecture Notes in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA