Home > Computing and Information Technology > Computer science > Mathematical theory of computation > Geometric Structures of Statistical Physics, Information Geometry, and Learning: SPIGL'20, Les Houches, France, July 27–31(361 Springer Proceedings in Mathematics & Statistics)
37%
Geometric Structures of Statistical Physics, Information Geometry, and Learning: SPIGL'20, Les Houches, France, July 27–31(361 Springer Proceedings in Mathematics & Statistics)

Geometric Structures of Statistical Physics, Information Geometry, and Learning: SPIGL'20, Les Houches, France, July 27–31(361 Springer Proceedings in Mathematics & Statistics)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces. This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.

Table of Contents:
PART 1: Tribute to Jean-Marie Souriau seminal works: G. de Saxcé and C.-M. Marle, Structure des Systèmes Dynamiques.- Jean-Marie Souriau’s book 50th birthday.-  F. Barbaresco, Jean-Marie Souriau’s Symplectic Model of Statistical Physics : Seminal papers on Lie Groups Thermodynamics - Quod Erat Demonstrandum.- PART 2: Lie Group Geometry & Diffeological Model of Statistical Physics and Information Geometry: F. Barbaresco - Souriau-Casimir Lie Groups Thermodynamics & Machine Learning.- K. Tojo and T. Yoshino, An exponential family on the upper half plane and its conjugate prior.- E. Chevallier and N. Guigui, Wrapped statistical models on manifolds: motivations, the case SE(n), and generalization to symmetric spaces.- G. de Saxcé, Galilean Thermodynamics of Continua.- H. Vân Lê and A. Tuzhilin, Nonparametric estimations and the diffeological Fisher metric.- PART 3: Advanced Geometrical Models of Statistical Manifolds in Information Geometry: J.-P. Francoise, Information Geometry and Integrable Hamiltonian Systems.- M. N. Boyom, Relevant Differential topology in statistical manifolds.- G. Pistone, A lecture about the use of Orlicz Spaces in Information Geometry.- F. Nielsen and G. Hadjeres, Quasiconvex Jensen divergences and quasiconvex Bregman divergences.- PART 4: Geometric Structures of Mechanics, Thermodynamics & Inference for Learning: F. Gay-Balmaz and H. Yoshimura, Dirac Structures and Variational Formulation of Thermodynamics for Open Systems.- A. A. Simoes, D. Martín de Diego, M. L. Valcázar and Manuel de León, The geometry of some thermodynamic systems.- F. Chinesta, E. Cueto, M. Grmela, B. Mioya, M. Pavelka and M. Sipka, Learning Physics from Data: a Thermodynamic Interpretation.- Z. Terze, V. Pandža, M. Andrić and D. Zlatar, Computational dynamics of reduced coupled multibody-fluid system in Lie group setting.- F. Masi, I. Stefanou, P. Vannucci and V. Maffi-Berthier, Material modeling via Thermodynamics-based Artificial Neural Networks.- K. Grosvenor, Information Geometry and Quantum Fields.- PART 5: Hamiltonian Monte Carlo, HMC Sampling and Learning on Manifolds: A. Barp, The Geometric Integration of Measure-Preserving Flows for Sampling and Hamiltonian Monte Carlo.- A. Fradi, I. Adouani and C. Samir, Bayesian inference on local distributions of functions and multidimensional curves with spherical HMC sampling.- S. Huntsman, Sampling and Statistical Physics via Symmetry.- T. Gerald, H. Zaatiti and H. Hajri, A Practical hands-on for learning Graph Data Communities on Manifolds.


Best Sellers


Product Details
  • ISBN-13: 9783030779566
  • Publisher: Springer Nature Switzerland AG
  • Publisher Imprint: Springer Nature Switzerland AG
  • Height: 235 mm
  • No of Pages: 459
  • Series Title: 361 Springer Proceedings in Mathematics & Statistics
  • Sub Title: SPIGL'20, Les Houches, France, July 27–31
  • Width: 155 mm
  • ISBN-10: 3030779564
  • Publisher Date: 27 Jun 2021
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 28 mm
  • Weight: 906 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Geometric Structures of Statistical Physics, Information Geometry, and Learning: SPIGL'20, Les Houches, France, July 27–31(361 Springer Proceedings in Mathematics & Statistics)
Springer Nature Switzerland AG -
Geometric Structures of Statistical Physics, Information Geometry, and Learning: SPIGL'20, Les Houches, France, July 27–31(361 Springer Proceedings in Mathematics & Statistics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Geometric Structures of Statistical Physics, Information Geometry, and Learning: SPIGL'20, Les Houches, France, July 27–31(361 Springer Proceedings in Mathematics & Statistics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA