Home > Mathematics and Science Textbooks > Mathematics > Applied mathematics > Approximate Dynamic Programming: Solving the Curses of Dimensionality(Wiley Series in Probability and Statistics)
5%
Approximate Dynamic Programming: Solving the Curses of Dimensionality(Wiley Series in Probability and Statistics)

Approximate Dynamic Programming: Solving the Curses of Dimensionality(Wiley Series in Probability and Statistics)

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Praise for the First Edition "Finally, a book devoted to dynamic programming and written using the language of operations research (OR)! This beautiful book fills a gap in the libraries of OR specialists and practitioners." —Computing Reviews This new edition showcases a focus on modeling and computation for complex classes of approximate dynamic programming problems Understanding approximate dynamic programming (ADP) is vital in order to develop practical and high-quality solutions to complex industrial problems, particularly when those problems involve making decisions in the presence of uncertainty. Approximate Dynamic Programming, Second Edition uniquely integrates four distinct disciplines—Markov decision processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully approach, model, and solve a wide range of real-life problems using ADP. The book continues to bridge the gap between computer science, simulation, and operations research and now adopts the notation and vocabulary of reinforcement learning as well as stochastic search and simulation optimization. The author outlines the essential algorithms that serve as a starting point in the design of practical solutions for real problems. The three curses of dimensionality that impact complex problems are introduced and detailed coverage of implementation challenges is provided. The Second Edition also features: A new chapter describing four fundamental classes of policies for working with diverse stochastic optimization problems: myopic policies, look-ahead policies, policy function approximations, and policies based on value function approximations A new chapter on policy search that brings together stochastic search and simulation optimization concepts and introduces a new class of optimal learning strategies Updated coverage of the exploration exploitation problem in ADP, now including a recently developed method for doing active learning in the presence of a physical state, using the concept of the knowledge gradient A new sequence of chapters describing statistical methods for approximating value functions, estimating the value of a fixed policy, and value function approximation while searching for optimal policies The presented coverage of ADP emphasizes models and algorithms, focusing on related applications and computation while also discussing the theoretical side of the topic that explores proofs of convergence and rate of convergence. A related website features an ongoing discussion of the evolving fields of approximation dynamic programming and reinforcement learning, along with additional readings, software, and datasets. Requiring only a basic understanding of statistics and probability, Approximate Dynamic Programming, Second Edition is an excellent book for industrial engineering and operations research courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals who utilize dynamic programming, stochastic programming, and control theory to solve problems in their everyday work.

Table of Contents:
Preface to the Second Edition xi Preface to the First Edition xv Acknowledgments xvii 1 The Challenges of Dynamic Programming 1 1.1 A Dynamic Programming Example: A Shortest Path Problem, 2 1.2 The Three Curses of Dimensionality, 3 1.3 Some Real Applications, 6 1.4 Problem Classes, 11 1.5 The Many Dialects of Dynamic Programming, 15 1.6 What Is New in This Book?, 17 1.7 Pedagogy, 19 1.8 Bibliographic Notes, 22 2 Some Illustrative Models 25 2.1 Deterministic Problems, 26 2.2 Stochastic Problems, 31 2.3 Information Acquisition Problems, 47 2.4 A Simple Modeling Framework for Dynamic Programs, 50 2.5 Bibliographic Notes, 54 Problems, 54 3 Introduction to Markov Decision Processes 57 3.1 The Optimality Equations, 58 3.2 Finite Horizon Problems, 65 3.3 Infinite Horizon Problems, 66 3.4 Value Iteration, 68 3.5 Policy Iteration, 74 3.6 Hybrid Value-Policy Iteration, 75 3.7 Average Reward Dynamic Programming, 76 3.8 The Linear Programming Method for Dynamic Programs, 77 3.9 Monotone Policies*, 78 3.10 Why Does It Work?**, 84 3.11 Bibliographic Notes, 103 Problems, 103 4 Introduction to Approximate Dynamic Programming 111 4.1 The Three Curses of Dimensionality (Revisited), 112 4.2 The Basic Idea, 114 4.3 Q-Learning and SARSA, 122 4.4 Real-Time Dynamic Programming, 126 4.5 Approximate Value Iteration, 127 4.6 The Post-Decision State Variable, 129 4.7 Low-Dimensional Representations of Value Functions, 144 4.8 So Just What Is Approximate Dynamic Programming?, 146 4.9 Experimental Issues, 149 4.10 But Does It Work?, 155 4.11 Bibliographic Notes, 156 Problems, 158 5 Modeling Dynamic Programs 167 5.1 Notational Style, 169 5.2 Modeling Time, 170 5.3 Modeling Resources, 174 5.4 The States of Our System, 178 5.5 Modeling Decisions, 187 5.6 The Exogenous Information Process, 189 5.7 The Transition Function, 198 5.8 The Objective Function, 206 5.9 A Measure-Theoretic View of Information**, 211 5.10 Bibliographic Notes, 213 Problems, 214 6 Policies 221 6.1 Myopic Policies, 224 6.2 Lookahead Policies, 224 6.3 Policy Function Approximations, 232 6.4 Value Function Approximations, 235 6.5 Hybrid Strategies, 239 6.6 Randomized Policies, 242 6.7 How to Choose a Policy?, 244 6.8 Bibliographic Notes, 247 Problems, 247 7 Policy Search 249 7.1 Background, 250 7.2 Gradient Search, 253 7.3 Direct Policy Search for Finite Alternatives, 256 7.4 The Knowledge Gradient Algorithm for Discrete Alternatives, 262 7.5 Simulation Optimization, 270 7.6 Why Does It Work?**, 274 7.7 Bibliographic Notes, 285 Problems, 286 8 Approximating Value Functions 289 8.1 Lookup Tables and Aggregation, 290 8.2 Parametric Models, 304 8.3 Regression Variations, 314 8.4 Nonparametric Models, 316 8.5 Approximations and the Curse of Dimensionality, 325 8.6 Why Does It Work?**, 328 8.7 Bibliographic Notes, 333 Problems, 334 9 Learning Value Function Approximations 337 9.1 Sampling the Value of a Policy, 337 9.2 Stochastic Approximation Methods, 347 9.3 Recursive Least Squares for Linear Models, 349 9.4 Temporal Difference Learning with a Linear Model, 356 9.5 Bellman’s Equation Using a Linear Model, 358 9.6 Analysis of TD(0), LSTD, and LSPE Using a Single State, 364 9.7 Gradient-Based Methods for Approximate Value Iteration*, 366 9.8 Least Squares Temporal Differencing with Kernel Regression*, 371 9.9 Value Function Approximations Based on Bayesian Learning*, 373 9.10 Why Does It Work*, 376 9.11 Bibliographic Notes, 379 Problems, 381 10 Optimizing While Learning 383 10.1 Overview of Algorithmic Strategies, 385 10.2 Approximate Value Iteration and Q-Learning Using Lookup Tables, 386 10.3 Statistical Bias in the Max Operator, 397 10.4 Approximate Value Iteration and Q-Learning Using Linear Models, 400 10.5 Approximate Policy Iteration, 402 10.6 The Actor–Critic Paradigm, 408 10.7 Policy Gradient Methods, 410 10.8 The Linear Programming Method Using Basis Functions, 411 10.9 Approximate Policy Iteration Using Kernel Regression*, 413 10.10 Finite Horizon Approximations for Steady-State Applications, 415 10.11 Bibliographic Notes, 416 Problems, 418 11 Adaptive Estimation and Stepsizes 419 11.1 Learning Algorithms and Stepsizes, 420 11.2 Deterministic Stepsize Recipes, 425 11.3 Stochastic Stepsizes, 433 11.4 Optimal Stepsizes for Nonstationary Time Series, 437 11.5 Optimal Stepsizes for Approximate Value Iteration, 447 11.6 Convergence, 449 11.7 Guidelines for Choosing Stepsize Formulas, 451 11.8 Bibliographic Notes, 452 Problems, 453 12 Exploration Versus Exploitation 457 12.1 A Learning Exercise: The Nomadic Trucker, 457 12.2 An Introduction to Learning, 460 12.3 Heuristic Learning Policies, 464 12.4 Gittins Indexes for Online Learning, 470 12.5 The Knowledge Gradient Policy, 477 12.6 Learning with a Physical State, 482 12.7 Bibliographic Notes, 492 Problems, 493 13 Value Function Approximations for Resource Allocation Problems 497 13.1 Value Functions versus Gradients, 498 13.2 Linear Approximations, 499 13.3 Piecewise-Linear Approximations, 501 13.4 Solving a Resource Allocation Problem Using Piecewise-Linear Functions, 505 13.5 The SHAPE Algorithm, 509 13.6 Regression Methods, 513 13.7 Cutting Planes*, 516 13.8 Why Does It Work?**, 528 13.9 Bibliographic Notes, 535 Problems, 536 14 Dynamic Resource Allocation Problems 541 14.1 An Asset Acquisition Problem, 541 14.2 The Blood Management Problem, 547 14.3 A Portfolio Optimization Problem, 557 14.4 A General Resource Allocation Problem, 560 14.5 A Fleet Management Problem, 573 14.6 A Driver Management Problem, 580 14.7 Bibliographic Notes, 585 Problems, 586 15 Implementation Challenges 593 15.1 Will ADP Work for Your Problem?, 593 15.2 Designing an ADP Algorithm for Complex Problems, 594 15.3 Debugging an ADP Algorithm, 596 15.4 Practical Issues, 597 15.5 Modeling Your Problem, 602 15.6 Online versus Offline Models, 604 15.7 If It Works, Patent It!, 606 Bibliography 607 Index 623


Best Sellers


Product Details
  • ISBN-13: 9780470604458
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Depth: 44
  • Height: 236 mm
  • No of Pages: 656
  • Returnable: N
  • Spine Width: 41 mm
  • Weight: 1043 gr
  • ISBN-10: 047060445X
  • Publisher Date: 18 Nov 2011
  • Binding: Hardback
  • Edition: 2 Rev ed
  • Language: English
  • Returnable: N
  • Series Title: Wiley Series in Probability and Statistics
  • Sub Title: Solving the Curses of Dimensionality
  • Width: 155 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Approximate Dynamic Programming: Solving the Curses of Dimensionality(Wiley Series in Probability and Statistics)
John Wiley & Sons Inc -
Approximate Dynamic Programming: Solving the Curses of Dimensionality(Wiley Series in Probability and Statistics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Approximate Dynamic Programming: Solving the Curses of Dimensionality(Wiley Series in Probability and Statistics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA