Our website is currently undergoing technical upgrades to serve you better. We’ll be back online shortly.
59%
Algorithms & Data Structures

Algorithms & Data Structures

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Asymptotic algorithm analysis is a methodology which has been given a lot of attention recently. Several methods of asymptotic analysis are considered to estimate the resource consumption of an algorithm, giving an assessment if a proposed algorithm can meet the resource constraints for a problem before the implementation. Processing nodes of the binary and non-binary trees in an organized manner is investigated using various algorithms. Several methods for implementing binary trees and their nodes are given. Issues relating to the design of algorithms and data structures for disk-based applications are solved, as well as problems of searching data stored in lists and tables. Algorithms for solving some problems related to finding shortest routes in a graph and the minimum-cost spanning tree, are applied to determine lowest-cost connectivity in a network. The initial five chapters of this book considers asymptotic algorithm analysis and provide various algorithms, such as modification of LMS algorithm, a direct search algorithm is proposed for minimizing an arbitrary function, etc. The following nine chapters present generative algorithms for random graphs, trees and big data. The remaining content of this book focuses on the advances of specific methods and algorithms in the field of data structures, especially in graph theory. The mean square convergence of the LMS algorithm is investigated for the large class of linearly filtered random driving processes, containing the following contributions: (i) The parameter error vector covariance matrix can be decomposed into two parts, (ii) The impact of additive noise is shown to contribute only to the modal space of the driving process independently from the noise statistic and thus defines the steady state of the filter. The certain and uncertain neutral systems with time-delay and saturating actuator are considered. In order to analyse and optimize the system, auxiliary functions are presented based on additive decomposition approach and the relationship among them is discussed. As the novel stability criterion, two sufficient conditions are obtained for asymptotic stability of the neutral systems. Furthermore, the stability analysis algorithm and optimality algorithm are introduced to optimize the result. A direct search algorithm is proposed for minimizing an arbitrary real valued function. The algorithm uses a new function transformation and three simplex-based operations. The function transformation provides global exploration features, while the simplex-based operations guarantees the termination of the algorithm and provides global convergence to a stationary point if the cost function is differentiable and its gradient is Lipschitz continuous. The algorithm’s performance has been extensively tested using benchmark functions and compared to some well-known global optimization algorithms. In the pursuit of finding subclasses of the makespan minimization problem on unrelated parallel machines that have approximation algorithms with approximation ratio better than 2, the graph balancing problem has been of current interest. In the graph balancing problem each job can be non-preemptively scheduled on one of at most two machines with the same processing time on either machine. A 3/2 -approximation algorithm for the graph balancing problem is presented. Recently manifold learning has received extensive interest in the community of pattern recognition. Despite their appealing properties, most manifold learning algorithms are not robust in practical applications. This problem is addressed in the context of the Hessian locally linear embedding (HLLE) algorithm and propose a more robust method, called RHLLE, which aims to be robust against both outliers and noise in the data. Specifically, a fast outlier detection method for high-dimensional datasets is proposed. Then, a local smoothing method is employed to reduce noise. Nowadays, a leading instance of big data is represented by Web data that lead to the definition of so-called big Web data. In order to process such kind of big data, MapReduce, an open source computational framework specifically tailored to big data processing, has emerged during the last years as the reference implementation for this critical setting. In line with this trend, an approach is presented for efficiently implementing traversals of large-scale Resource Description Framework (RDF) graphs over MapReduce that is based on the Breadth First Search (BFS) strategy for visiting (RDF) graphs to be decomposed and processed according to the MapReduce framework. Big data are everywhere as high volumes of varieties of valuable precise and uncertain data can be easily collected or generated at high velocity in various real-life applications. Embedded in these big data are rich sets of useful information and knowledge. To mine these big data and to discover useful information and knowledge, a data analytic algorithm is presented. This algorithm manages, queries, and processes uncertain big data in cloud environments. More specifically, it manages transactions of uncertain big data, allows users to query these big data by specifying constraints expressing their interests, and processes the user-specified constraints to discover useful information and knowledge from the uncertain big data. Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. A generative model for random graphs with discrete vertex labels and numeric edge weights is developed. The weights are represented as a set of Beta Mixture Models (BMMs) with an arbitrary number of mixtures, which are learned from real-world networks. Therefore, a Bayesian Variational Inference (VI) approach is proposed, which yields an accurate estimation while keeping computation times tractable.Aggregation delay is the minimum number of time slots required to aggregate data along the edges of a data gathering tree (DG tree) spanning all the nodes in a wireless sensor network (WSN). A benchmarking algorithm is proposed to determine the minimum possible aggregation delay for DG trees in a WSN. It is shown that the minimum aggregation delay for a DG tree depends on the underlying design choices (bottleneck node-weight based or bottleneck link-weight based) behind its construction. Some properties of a graph which is constructed from the equivalence classes of nonzero zero-divisors determined by the annihilator ideals of a poset are studied. In particular, it is demonstrated how this graph helps in identifying the annihilator prime ideals of a poset that satisfies the ascending chain condition for its proper annihilator ideals. An m-distant tree T is a tree in which there is a path of maximum length such that every vertex in is at the most distance from. This path is called a central path. For every tree, there is an integer such that is an m-distant tree. The radio number of some m-distant trees is determined for any positive integer, and as a consequence of it, the radio number of a class of 1-distant trees is found. The concept of distance degree regular (DDR) graphs denotes the graphs for which all vertices have the same distance degree sequence. By definition, a DDR graph must be a regular graph, but a regular graph may not be DDR. A graph is distance degree injective (DDI) graph if no two vertices have the same distance degree sequence. DDI graphs are highly irregular, in comparison with the DDR graphs. In this book, an exhaustive review of the two concepts of DDR and DDI graphs is conducted, starting with an insight into all distance related sequences and their applications. All the related open problems are listed.


Best Sellers


Product Details
  • ISBN-13: 9781680944631
  • Publisher: Arcler Education Inc
  • Binding: Hardback
  • Language: English
  • Spine Width: mm
  • Width: 152 mm
  • ISBN-10: 1680944630
  • Publisher Date: 30 Nov 2016
  • Height: 229 mm
  • No of Pages: 276
  • Weight: 1064 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Algorithms & Data Structures
Arcler Education Inc -
Algorithms & Data Structures
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Algorithms & Data Structures

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA