Home > Computing and Information Technology > Databases > Data capture and analysis > Advanced Data Mining and Applications: Third International Conference, ADMA 2007, Harbin, China, August 6-8, 2007 Proceedings(4632 Lecture Notes in Computer Science)
Advanced Data Mining and Applications: Third International Conference, ADMA 2007, Harbin, China, August 6-8, 2007  Proceedings(4632 Lecture Notes in Computer Science)

Advanced Data Mining and Applications: Third International Conference, ADMA 2007, Harbin, China, August 6-8, 2007 Proceedings(4632 Lecture Notes in Computer Science)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

The Third International Conference on Advanced Data Mining and Applications (ADMA) organized in Harbin, China continued the tradition already established by the first two ADMA conferences in Wuhan in 2005 and Xi’an in 2006. One major goal of ADMA is to create a respectable identity in the data mining research com- nity. This feat has been partially achieved in a very short time despite the young age of the conference, thanks to the rigorous review process insisted upon, the outstanding list of internationally renowned keynote speakers and the excellent program each year. The impact of a conference is measured by the citations the conference papers receive. Some have used this measure to rank conferences. For example, the independent source cs-conference-ranking.org ranks ADMA (0.65) higher than PAKDD (0.64) and PKDD (0.62) as of June 2007, which are well established conferences in data mining. While the ranking itself is questionable because the exact procedure is not disclosed, it is nevertheless an encouraging indicator of recognition for a very young conference such as ADMA.

Table of Contents:
Invited Talk.- Mining Ambiguous Data with Multi-instance Multi-label Representation.- Regular Papers.- DELAY: A Lazy Approach for Mining Frequent Patterns over High Speed Data Streams.- Exploring Content and Linkage Structures for Searching Relevant Web Pages.- CLBCRA-Approach for Combination of Content-Based and Link-Based Ranking in Web Search.- Rough Sets in Hybrid Soft Computing Systems.- Discovering Novel Multistage Attack Strategies.- Privacy Preserving DBSCAN Algorithm for Clustering.- A New Multi-level Algorithm Based on Particle Swarm Optimization for Bisecting Graph.- A Supervised Subspace Learning Algorithm: Supervised Neighborhood Preserving Embedding.- A k-Anonymity Clustering Method for Effective Data Privacy Preservation.- LSSVM with Fuzzy Pre-processing Model Based Aero Engine Data Mining Technology.- A Coding Hierarchy Computing Based Clustering Algorithm.- Mining Both Positive and Negative Association Rules from Frequent and Infrequent Itemsets.- Survey of Improving Naive Bayes for Classification.- Privacy Preserving BIRCH Algorithm for Clustering over Arbitrarily Partitioned Databases.- Unsupervised Outlier Detection in Sensor Networks Using Aggregation Tree.- Separator: Sifting Hierarchical Heavy Hitters Accurately from Data Streams.- Spatial Fuzzy Clustering Using Varying Coefficients.- Collaborative Target Classification for Image Recognition in Wireless Sensor Networks.- Dimensionality Reduction for Mass Spectrometry Data.- The Study of Dynamic Aggregation of Relational Attributes on Relational Data Mining.- Learning Optimal Kernel from Distance Metric in Twin Kernel Embedding for Dimensionality Reduction and Visualization of Fingerprints.- Efficiently Monitoring Nearest Neighbors to a Moving Object.- A Novel Text Classification Approach Based onEnhanced Association Rule.- Applications of the Moving Average of n th -Order Difference Algorithm for Time Series Prediction.- Inference of Gene Regulatory Network by Bayesian Network Using Metropolis-Hastings Algorithm.- A Consensus Recommender for Web Users.- Constructing Classification Rules Based on SVR and Its Derivative Characteristics.- Hiding Sensitive Associative Classification Rule by Data Reduction.- AOG-ags Algorithms and Applications.- A Framework for Titled Document Categorization with Modified Multinomial Naivebayes Classifier.- Prediction of Protein Subcellular Locations by Combining K-Local Hyperplane Distance Nearest Neighbor.- A Similarity Retrieval Method in Brain Image Sequence Database.- A Criterion for Learning the Data-Dependent Kernel for Classification.- Topic Extraction with AGAPE.- Clustering Massive Text Data Streams by Semantic Smoothing Model.- GraSeq: A Novel Approximate Mining Approach of Sequential Patterns over Data Stream.- A Novel Greedy Bayesian Network Structure Learning Algorithm for Limited Data.- Optimum Neural Network Construction Via Linear Programming Minimum Sphere Set Covering.- How Investigative Data Mining Can Help Intelligence Agencies to Discover Dependence of Nodes in Terrorist Networks.- Prediction of Enzyme Class by Using Reactive Motifs Generated from Binding and Catalytic Sites.- Bayesian Network Structure Ensemble Learning.- Fusion of Palmprint and Iris for Personal Authentication.- Enhanced Graph Based Genealogical Record Linkage.- A Fuzzy Comprehensive Clustering Method.- Short Papers.- CACS: A Novel Classification Algorithm Based on Concept Similarity.- Data Mining in Tourism Demand Analysis: A Retrospective Analysis.- Chinese Patent Mining Based on Sememe Statistics and Key-Phrase Extraction.- Classification of Business Travelers Using SVMs Combined with Kernel Principal Component Analysis.- Research on the Traffic Matrix Based on Sampling Model.- A Causal Analysis for the Expenditure Data of Business Travelers.- A Visual and Interactive Data Exploration Method for Large Data Sets and Clustering.- Explorative Data Mining on Stock Data – Experimental Results and Findings.- Graph Structural Mining in Terrorist Networks.- Characterizing Pseudobase and Predicting RNA Secondary Structure with Simple H-Type Pseudoknots Based on Dynamic Programming.- Locally Discriminant Projection with Kernels for Feature Extraction.- A GA-Based Feature Subset Selection and Parameter Optimization of Support Vector Machine for Content – Based Image Retrieval.- E-Stream: Evolution-Based Technique for Stream Clustering.- H-BayesClust: A New Hierarchical Clustering Based on Bayesian Networks.- An Improved AdaBoost Algorithm Based on Adaptive Weight Adjusting.


Best Sellers


Product Details
  • ISBN-13: 9783540738701
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Height: 235 mm
  • No of Pages: 636
  • Returnable: Y
  • Series Title: 4632 Lecture Notes in Computer Science
  • Sub Title: Third International Conference, ADMA 2007, Harbin, China, August 6-8, 2007 Proceedings
  • Width: 155 mm
  • ISBN-10: 3540738703
  • Publisher Date: 17 Jul 2007
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: 4632 Lecture Notes in Computer Science
  • Spine Width: 33 mm
  • Weight: 901 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Advanced Data Mining and Applications: Third International Conference, ADMA 2007, Harbin, China, August 6-8, 2007  Proceedings(4632 Lecture Notes in Computer Science)
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Advanced Data Mining and Applications: Third International Conference, ADMA 2007, Harbin, China, August 6-8, 2007 Proceedings(4632 Lecture Notes in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Advanced Data Mining and Applications: Third International Conference, ADMA 2007, Harbin, China, August 6-8, 2007 Proceedings(4632 Lecture Notes in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA